金刚石是一种性能优异的宽禁带半导体材料,它是继硅(Si)、砷化镓(GaAs)、磷化铟(InP)、氮化镓(GaN)等之后的重要半导体材料之一,可用于重要的半导体器件,其优异的性能可归纳如下:
(1)极高的介质击穿特性:击穿电场为107V/cm,是GaAs材料的50倍,GaN材料的2倍,SiC材料的2.5倍。
(2)极高的功率容量:金刚石容许的功率使用容量是Si材料的2500倍以上;特别适合制作大功率电子器件。
(3)极高的热传导:室温下金刚石具有最高的热导率,是铜的5倍。
(5)高饱和载流子速度:金刚石的饱和载流子速度是GaAs、Si或InP的12.7倍,而且载流子速度比GaAs的峰值还要大,即在电场强度增加时也可维持其高的速率。
(6)高载流子迁移率:无论是电子迁移率还是空穴迁移率都优于其他半导体材料,金刚石电子迁移率为4500cm2/(V·s),而Si为1600cm2/(V·s),GaAs为800cm2/(V·s),GaN为600cm2/(V·s);金刚石的空穴迁移率为3800cm2/(V·s),而Si为600cm2/(V·s),GaAs为300cm2/(V·s),GaN小于50cm2/(V·s),因而,金刚石可以制作高频电子器件。(7)极高的品质因数:通常,品质因数由饱和载流子速度和介电强度确定。如以Si的品质因数为1作为基准,那么GaAs的品质因数为7,InP的品质因数为16,SiC的品质因数为1138,金刚石的品质因数为8206。当其品质因数用于判断逻辑电路的潜力时,介电常数、饱和载流子速度和热导率是判据,如Si的判据为1,则GaAs为0.456,SiC为5.8,金刚石为32.2,因此,在理论上,金刚石最适合于集成电路使用。
(8)优良的光学特性:金刚石不仅具有优异的电学特性,而且有优良的光学特性。金刚石除在紫外和红外的某些波段存在本征吸收外,在整个光谱波段(紫外、可见光、红外)均透明,并有不寻常的高折射率,因此,金刚石是最理想的光学窗口材料。
(9)极高的硬度和极高的化学稳定性:金刚石不仅具有结构致密、耐磨、低摩擦因数和极高的硬度,而且在大多数环境下都是绝对稳定,耐化学腐蚀的。
金刚石不仅有上述优越的性质,更重要的是其各种性质的组合,使得它成为最重要的第三代半导体材料之一,这也是人们热衷研究半导体金刚石的原因和意义。由于金刚石的固有特性和天然金刚石的稀有性,其加工制造技术十分困难,尤其是制造出满足电子学和光学应用的半导体金刚石,目前尚存在许多问题,为此,需要花大力气研究它的制造加工技术。
金刚石最常见的应用是作为热管理材料,在功率器件、电子器件中作为热沉。热沉是把器件产生的热量迅速吸收和发散,用金刚石薄膜作热沉时,要求具备以下特点:
·热传导率大
·电气绝缘性好
·热膨胀系数与器件材料的膨胀系数基本相同
·介电常数小
·与热传导性、电传导性优良的金属的粘附性好
·化学性质稳定
·表面平滑性好
凯发k8国际团队,引领全球技术革新,在CVD金刚石工艺上取得了较大进展,CVD金刚石生长面表面粗糙度 Ra < 1 nm,完全符合半导体应用标准。CVD金刚石作为卓越的热管理材料,金刚石热沉片在诸多重要领域都有广阔的应用前景。